I  Design Procedure 

Design procedure The procedure for the design of beam may be summarized as follows: 1. Estimation of loads 2. Analysis 3. Design 1. Estimation of loads The loads that get realized on the beams consists of the following:  Self weight of the beam.
 Weight of the wall constructed on the beam
 The portion of the slab loads which gets transferred to the beams. These slab loads are due to live loads that are acting on the slab dead loads such as self weight of the slab, floor finishes, partitions, false ceiling and some special fixed loads.
The dead loads are calculated based on the density whereas the live loads are taken from IS: 875 depending on the functional use of the building. 
II  Impose (Live) load  IS 875 


III  Structural Analysis 

2. Analysis
For the loads that are
acting on the beams, the analysis is done by any standard method to obtain the
shear forces and bending moments 
IV  Example  Analysis of simply supported beam 

Deflection of Simply Supported Beam

V  Cantilever Beam deflection 

Cantilever Beam Deflection

VI  

3. Design
 Selection of width and depth of
the beam. The width of the beam selected shall satisfy the slenderness
limits specified in IS 456 : 2000 clause 23.3 to ensure the lateral
stability.
 Calculation of effective span
(le) (Refer clause 22.2, IS 456:2000)
 Calculation of loads (w)

 Calculation of critical moments
and shears. The moment and shear that exists at the critical sections are
considered for the design. Critical sections are the sections where the
values are maximum. Critical section for the moment in a simply supported
beam is at the point where the shear force is zero. For continuous beams
the critical section for the +ve bending moment is in the span and –ve
bending moment is at the support. The critical section for the shear is at
the support.
 Find the factored shear (Vu)
and factored moment (Mu)
 Check for the depth based on
maximum bending moment.
 Considering the section to be
nearly balanced section and using the equation Annexure G, IS 4562000
obtain the value of the required depth required. If the assumed depth “d”
is greater than the “required”, it satisfies the depth criteria based on
flexure. If the assumed section is less than the” required”, revise the
section.
 Calculation of steel. As the
section is under reinforced, use the equation G.1.1.(b) to obtain the
steel.
 Check for shear.
 Check for developmental
length.
 Check for deflection.
 Check for Ast min, Ast max and
distance between the two bars.
